ORIGINAL ARTICLE

Multifunctional polymeric nanofibrous scaffolds enriched with azilsartan medoxomil for enhanced wound healing

Alka¹ · Nidhi Mishra¹ · Priya Singh^{1,2} · Neelu Singh¹ · Kalpana Rathore³ · Vivek Verma^{3,4,5,6} · Sheel Ratna⁷ · Raquibun Nisha¹ · Abhishek Verma¹ · Shubhini A. Saraf^{1,8}

Accepted: 21 May 2024 © Controlled Release Society 2024

Abstract

A prolonged and compromised wound healing process poses a significant clinical challenge, necessitating innovative solutions. This research investigates the potential application of nanotechnology-based formulations, specifically nanofiber (NF) scaffolds, in addressing this issue. The study focuses on the development and characterization of multifunctional nanofibrous scaffolds (AZL-CS/PVA-NF) composed of azilsartan medoxomil (AZL) enriched chitosan/polyvinyl alcohol (CS/PVA) through electrospinning. The scaffolds underwent comprehensive characterization both in vitro and in vivo. The mean diameter and tensile strength of AZL-CS/PVA-NF were determined to be 240.42 ± 3.55 nm and 18.05 ± 1.18 MPa, respectively. A notable drug release rate of $93.86 \pm 2.04\%$, was observed from AZL-CS/PVA-NF over 48 h at pH 7.4. Moreover, AZL-CS/PVA-NF exhibited potent antimicrobial efficacy for Staphylococcus aureus and *Pseudomonas aeruginosa*. The expression levels of Akt and CD31 were significantly elevated, while Stat3 showed a decrease, indicating a heightened tissue regeneration rate with AZL-CS/PVA-NF compared to other treatment groups. In vivo ELISA findings revealed reduced inflammatory markers (IL-6, IL-1 β , TNF- α) within treated skin tissue, implying a beneficial effect on injury repair. The comprehensive findings of the present endeavour underscore the superior wound healing activity of the developed AZL-CS/PVA-NF evA-NF scaffolds in a Wistar rat full-thickness excision wound model. This indicates their potential as novel carriers for drugs and dressings in the field of wound care.

Keywords Wound healing · Drug delivery · Topical · Electrospun nanofiber scaffolds · Extracellular matrix mimicking

Highlights

- Repurposing Angiotensin II Receptor Blockers (ARBs) Analogue for Wound Healing.
- Novel AZL-Enriched CS/PVA Nanofiber Scaffolds.
- Optimized Blend Rheology for Drug Delivory Potentic
- Optimized Blend Rheology for Drug Delivery Potential.

Shubhini A. Saraf shubhini.saraf@gmail.com

- ¹ Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
- ² School of Pharmacy, GITAM (Deemed-to-Be) University, Rudraram, Patancheru Mandal, Hyderabad, 502329, Telangana, India
- ³ Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
- ⁴ Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur 208016, Uttar Pradesh, India

- ⁵ Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur 208016, Uttar Pradesh, India
- ⁶ National Centre for Flexible Electronics, Indian Institute of Technology Kanpur 208016, Uttar Pradesh, India
- ⁷ Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
- ⁸ National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow 226025, Uttar Pradesh, India